Russian Journal of Organic Chemistry, Vol. 38, No. 6, 2002, pp. 909-911. Translated from Zhurnal Organicheskoi Khimii, Vol. 38, No. 6, 2002, pp. 950-951.

Original Russian Text Copyright © 2002 by Kopaeva, Moskalenko, Krasnikova, Boev.

SHORT COMMUNICATIONS

Synthesis of Unsymmetrical Completely Substituted Tetrazole-containing 2- and 4-Methylenemercurated Quinolinium Salts

N.A. Kopaeva, A.I. Moskalenko, E.M. Krasnikova, and V.I. Boev

Lipetsk State Pedagogical University, Lipetsk, 398020 Russia

Received January 16, 2002

Organomercury derivatives of quinolinium [1] and tetrazole [2] salts are of interest for synthesis of various functional derivatives thereof finding application in medicine, biology, agriculture, and technology [3]. In extension of previously developed method for the synthesis of completely substituted symmetrical and unsymmetrical 2- and 4-methylenemercurated salts of heterocyclic cations [4] we report here on the reactions of 2- and 4-methylenemercurated quinolinium salts I–III [5] with tetrazolate-anions. The latter are known to readily arise on treating with alkaline reagents tetrazole (IV) and 5-substituted tetrazoles V, VI that are heterocyclic N–H acids [8].

Actually, addition of sodium ethylate in anhydrous ethanol to solutions of compounds **IV**, **V** in acetonitrile gave rise in situ to the corresponding sodium salts that afterwards cleanly reacted at room temperature with an equimolar amount of salt **I–III** resulting in substitution of acetate group attached to mercury by tetrasole rest. Thus we obtained tetrazole-containing quinolinium salts **VII–X** in 76–96% yield. In the case of 5-methylsulfonyltetrazole (VI), a fairly strong N–H acid [7], with salts II, III was reacted its more accessible [7] potassium salt in water-acetonitrile medium. The yields of reaction products XI, XII here also were high.

It should be noted that N-substituted tetrazoles, e.g., 1-phenyltetrazole, under the described conditions did not react with salts **I-III**.

The mercury-containing salts **VII–XII** synthesized are stable in air colored solids, insoluble in water and nonpolar organic solvents; on heating they melt with decomposition. The composition and structure of compounds **VII–XII** were confirmed by elemental analyses, IR and ¹H NMR spectra.

In IR spectra of all compounds obtained the absorption bands of acetate group characteristic of initial salts **I–III** [5] were lacking, but appeared bands of various intensity corresponding to vibrations of ClO_4 group and tetrazole ring [8]. In the ¹H NMR spectra only one set of multiplet signals was observed belong-

R = H (IV, VII, VIII), SMe (V, IX, X), MeSO₂ (VI, XI, XII); R' = Me (I, VII), Ph (II, III, VIII-XII); 2-CH₂HgOCOMe (I, II, VII-IX, XI), 4-CH₂HgOCOMe (III, X, XII).

ing to the protons from the structural fragments of compounds **VII–XII**. These data indicate that the mercuration of tetrazolate anions with salts **I–III** furnished a single N-isomer probably due to formation of delocalized σ -bonds "metal–ring" with a possible donor-acceptor interaction of the lowest occupied orbitals of tetrazolate anion and unoccupied orbitals of cation ⁺HgCH₂Ht with an appropriate symmetry. However assignment of compounds **VII–XII** to N¹- or N²-isomers of tetrazole requires supplementary studies.

On heating compounds **VII-XII** in hydrochloric acid they suffer protodemercuration affording salts of 2- and 4-methyl-1-R'-quinolinium and initial tetrazoles **IV-VI** identified with authentic samples by melting points and IR spectra.

1-Methyl-2-n⁵-tetrazolemercuromethylquinolinium perchlorate (VII). To a solution of 0.070 g (1 mmol) of tetrazole IV in 2.3 g of anhydrous acetonitrile was added 1 mmol of sodium ethylate in 0.6 ml of anhydrous ethanol, and the mixture was stirred for 0.5 h at room temperature. Then to the mixture was added 3 ml of acetonitrile, 0.516 g (1 mmol) of salt I, the stirring was continued for 1 h, and the reaction mixture was left standing for 20 h at room temperature. Then 20 ml of ethyl ether was added, the separated precipitate was filtered off, washed with 5 ml of water, and dried. Yield 0.468 g (89%), mp 180-182°C (decomp.). IR spectrum, η, cm⁻¹: 1098, $621 (ClO_4)$, 1015, 1049, 1081, 1260, 1436, 1458, 1508 (tetrazole). ¹H NMR spectrum, δ, ppm: 3.82 s (2H, CH₂Hg, ² J_{HgH} 146 Hz), 4.31 s (3H, NCH₃), 7.36–8.78 m (6H $_{arom}$), 9.18 s (1H, C⁵H). Found, %: Hg 38.20; N 12.96. C₁₂H₁₂ClHgN₅O₄. Calculated, %: Hg 38.12; N 13.30.

Compounds **VIII-X** were prepared in a similar way.

1-Phenyl-2- η^{5} **2-tetrazolemercuromethylquinolinium perchlorate (VIII).** Yield 85%, green-yellow crystals, mp 190–192°C (decomp.). IR spectrum, η , cm⁻¹: 1100, 620 (ClO₄), 1018, 1053, 1083, 1262, 1442, 1460, 1512 (tetrazole). ¹H NMR spectrum, δ , ppm: 3.96 s (2H, CH₂Hg, ²J_{HgH} 151 Hz), 7.41–8.79 m (11H arom), 9.23 s (1H, C⁵H). Found, %: Hg 34.48; N11.45. C₁₇H₁₄ClHgN₅O₄. Calculated, %: Hg 34.10; N 11.90.

1-Phenyl-2- η^5 -(5-methylthiotetrazole)mercuromethylquinolinium perchlorate (IX). Yield 89%, red-brown crystals, mp 182–185\$oC (decomp.). IR spectrum, η , cm⁻¹: 1100, 621 (ClO₄), 1028, 1048, 1080, 1273, 1481, 1526 (tetrazole), 730 (C–S). ¹H NMR spectrum, δ , ppm: 2.65 s (3H, H₃CS), 3.91 s (2H, CH₂Hg, ²J_{HgH} 150 Hz), 7.39–8.68 m (11H arom). Found, %: Hg 31.46; N 11.08. C₁₈H₁₆ClHgN₅O₄S. Calculated, %: Hg 31.63; N 11.04.

1-Phenyl-4-η⁵-(**5-methylthiotetrazole)mercuromethylquinolinium perchlorate (X).** Yield 87%, green crystals, mp 185–188°C (decomp.). IR spectrum, η, cm⁻¹: 1098, 620 (ClO₄), 1023, 1051, 1082, 1275, 1478, 1528 (tetrazole), 730 (C–S). ¹H NMR spectrum, δ, ppm: 2.65 s (3H, H₃CS), 4.01 s (2H, CH₂Hg, ${}^{2}J_{\text{HgH}}$ 152 Hz), 7.42–8.73 m (11H arom). Found, %: Hg 31.12; N 11.47. C₁₈H₁₆ClHgN₅O₄S. Calculated, %: Hg 31.63; N 11.04.

1-Phenyl-2-η⁵-(5-methylsulfonyltetrazole)mercuromethylquinolinium perchlorate (XI). To 0.093 g (0.5 mmol) of 5-methylsulfonyltetrazole potassium salt in 1.2 ml of water was added 0.284 g (0.5 mmol) of compound **II** in 2.5 ml of acetonitrile, the mixture was stirred for 10 min at room temperature, 5 ml of water was added, the separated redbrown precipitate was filtered off, washed with water, and dried. Yield 0.32 g (96%), mp 210-212°C (decomp.). IR spectrum, η , cm⁻¹: 1100, 622 (ClO₄), 1054, 1076, 1084, 1408, 1470, 1506 (tetrazole), 1174, 1342 (SO₂). ¹H NMR spectrum, δ, ppm: 3.28 s (3H, Me), 3.95 s (2H, CH₂Hg, ²J_{HgH} 154 Hz), 7.42-8.71 m (11H arom). Found, %: Hg 29.83; N 10.62. $C_{18}H_{16}ClHgN_5O_6S$. Calculated, %: Hg 30.11: N 10.51.

Compound **XII** was prepared similarly.

1-Phenyl-4-η⁵-(**5-methylsulfonyltetrazole**)**mercuromethylquinolinium perchlorate (XII).** Yield 76%, yellow-brown crystals, mp 172–175°C (decomp.). IR spectrum, η, cm⁻¹: 1100, 621 (ClO₄), 1051, 1078, 1091, 1410, 1473, 1511 (tetrazole), 1175, 1344 (SO₂). ¹H NMR spectrum, δ, ppm: 3.28 s (3H, Me), 4.08 s (2H, CH₂Hg, ${}^{2}J_{\text{HgH}}$ 156 Hz), 7.43– 8.75 m (11H arom). Found, %: Hg 30.24; N 10.77. C₁₈H₁₆ClHgN₅O₆S. Calculated, %: Hg 30.11; N 10.51.

IR spectra were recorded on IKS-29 instrument from mulls in mineral oil. ¹H NMR spectra were registered on spectrometer Bruker AC-300 (300.13 MHz) in DMSO, internal reference HMDS.

REFERENCES

1. Boev, V.I., Moskalenko, A.I., Denisov, S.P., Nevstruev, A.N., Kopaeva, N.A., and Matorkina, I.A., Abstracts of Papers, VII Russian Conf. on Metalloorg. Khim., Moscow, 1999, vol. 2, p. 168.

- 2. Gaponik, P.N., *Doctoral Sci. (Chem.) Dissertation*, St. Petersburg, 2000.
- Koldobskii, G.I. and Ostrovskii, V.A., Usp. Khim., 1994, vol. 63, no. 10, pp. 847–865; Pilyugin, G.T. and Gutsulyak, B.M., Usp. Khim., 1963, vol. 32, no. 4, pp. 599–632.
- 4. Boev, V.I. and Moskalenko, A.I., *Zh. Obshch. Khim.*, 1994, vol. 64, no. 6, pp. 1028–1031.
- 5. Boev, V.I. and Moskalenko, A.I., *Zh. Obshch. Khim.*, 1994, vol. 64, no. 7, pp. 1128–1133.
- Koldobskii, G.I., Ostrovskii, V.A., and Gidaspov, B.V., *Khim. Geterotsikl. Soed.*, 1980, no. 7, p. 867.
- 7. Alam, L.V. and Koldobskii, G.I., *Zh. Org. Khim.*, 1997, vol. 33, no. 8, pp. 1224–1230.
- Koldobskii, G.I., Ostrovskii, V.A., and Poplavskii, V.S., *Khim. Geterotsikl. Soed.*, 1981, no. 10, pp. 1299–1326.